a) Growth Hormone
b) Endorphins
c) Vasopressin
d) Follicle-stimulating hormone
C is correct. Vasopressin.
The only hormone listed that is not secreted by the anterior pituitary gland is vasopressin, which is secreted by the posterior pituitary gland. Growth hormone, follicle-stimulating hormone, and endorphins, such as |alpha|-endorphin, |beta|-endorphin, and |gamma|-endorphin, are produced and secreted by the anterior pituitary gland.
With MCAT tutoring from MedSchoolCoach, we are committed to help you prepare, excel, and optimize your ideal score on the MCAT exam.
For each student we work with, we learn about their learning style, content knowledge, and goals. We match them with the most suitable tutor and conduct online sessions that make them feel as if they are in the classroom. Each session is recorded, plus with access to whiteboard notes. We focus on high-yield topics if you’re pressed for time. If you have more time or high-score goals, we meticulously cover the entire MCAT syllabus.
The endocrine system is a network of glands and organs that release hormones throughout the body, which regulate and control various functions. The hypothalamus and the pituitary gland are essential structures in the endocrine system because they are involved in the synthesis and secretion of numerous hormones. Figure 1 illustrates how these two structures are linked together. There are two separate pathways involving the hypothalamus and pituitary gland: the hypothalamic-anterior pituitary axis and the hypothalamic-posterior pituitary axis.
The hypothalamic-anterior pituitary axis is the pathway between the hypothalamus to the anterior pituitary gland. Hypothalamic neurons secrete releasing hormones into the hypophyseal portal system. This portal system contains a network of blood vessels that connect the hypothalamus to the anterior pituitary. From the hypophyseal portal system, the releasing hormones can act on the anterior pituitary gland to secrete a variety of different hormones that stimulate other target tissues. In this way, the anterior pituitary gland is separate from the hypothalamus. Like all other endocrine glands, the anterior pituitary is made of glandular tissue.
The second pathway is the hypothalamic-posterior pituitary axis. In this pathway, the axons of the hypothalamic neurons pass directly through the posterior pituitary, releasing hormones into the bloodstream from the latter gland. In this way, the posterior pituitary gland is essentially an extension of the hypothalamus. Therefore, unlike the anterior pituitary, the posterior pituitary is made up of neural tissue rather than glandular tissue. Both oxytocin and vasopressin (ADH) are released into systemic circulation via this pathway. Oxytocin is important for uterine contractions, and it also has a role in lactation after birth. Vasopressin or anti-diuretic hormone (ADH) helps to regulate blood osmolarity by increasing water reabsorption in the renal system.
Recall that the hypothalamus releases various releasing hormones into the anterior pituitary gland in order to stimulate the anterior pituitary to secrete its hormones. One releasing hormone is growth hormone-releasing hormone (GHRH). GHRH is involved in the release of growth hormone (GH) from the anterior pituitary gland. Growth hormone has various functions throughout the body, such as cell growth, regeneration, and reproduction. Somatostatin, which is an inhibitory hormone, is the opposite of GHRH. Somatostatin will inhibit the secretion of growth hormone from the anterior pituitary gland. Another releasing hormone is corticotropin-releasing hormone (CRH). CRH stimulates the anterior pituitary gland to release adrenocorticotropic hormone (ACTH). ACTH, in turn, stimulates the adrenal cortex to release cortisol, which is a steroid hormone involved in the metabolism of glucose and the immune response.
Another releasing hormone is thyrotropin-releasing hormone (TRH), which has a dual effect. First, it will stimulate the anterior pituitary gland to release thyroid-stimulating hormone (TSH). Thyroid-stimulating hormone will act on the thyroid gland to release the thyroid hormones. TRH also stimulates the release of prolactin from the anterior pituitary gland. Prolactin has a vital role in milk production in females. The hypothalamus also secretes dopamine, which inhibits the release of prolactin from the anterior pituitary gland. This is why dopamine is also called prolactin inhibitory hormone (PIH). It is important to note that prolactin is predominantly under inhibitory control, meaning that dopamine has a more substantial effect in inhibiting prolactin release than TRH does in stimulating prolactin release. Much of the time, then, in order to stimulate prolactin secretion, it is necessary to inhibit PIH secretion from the hypothalamus.
Finally, there is gonadotropin-releasing hormone (GnRH). This hormone will stimulate the anterior pituitary to release both follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which both have important roles in regulating the reproductive organs of both males and females.
Take a closer look at our entire MCAT Masterclass or explore our Biochemistry lessons below.
Are you ready to take your MCAT performance to a whole new level? Work with our 99th-percentile MCAT tutors to boost your score by 12 points or more!
See if MCAT Tutoring can help me
Talk to our enrollment team about MCAT Tutoring
Engaging audio learning to take your MCAT learning on the go, any time, any where. You'll be on the way to a higher MCAT score no matter where you are. Listen to over 200+ lessons.
Practice makes perfect! Our mock exams coupled with thorough explanations and in-depth analytics help students understand exactly where they stand.
Access hundreds of MCAT videos to help you study and raise your exam score. Augment your learning with expert-created flashcards and a question banks.